Intermolecular cross-linking of monomers in Helicobacter pylori Na+/H+ antiporter NhaA at the dimer interface inhibits antiporter activity.
نویسندگان
چکیده
We have previously shown that HPNhaA (Helicobacter pylori Na+/H+ antiporter) forms an oligomer in a native membrane of Escherichia coli, and conformational changes of oligomer occur between monomers of the oligomer during ion transport. In the present study, we use Blue-native PAGE to show that HPNhaA forms a dimer. Cysteine-scanning mutagenesis of residues 55-61 in a putative beta-sheet region of loop1 and subsequent functional analyses revealed that the Q58C mutation resulted in an intermolecular disulfide bond. G56C, I59C and G60C were found to be cross-linked by bifunctional cross-linkers. Furthermore, the Q58E mutant did not form a dimer, possibly due to electrostatic repulsion between monomers. These results imply that Gln-58 and the flanking sequence in the putative beta-sheet of the monomer are located close to the identical residues in the dimer. The Q58C mutant of NhaA was almost inactive under non-reducing conditions, and activity was restored under reducing conditions. This result showed that cross-linking at the dimer interface reduces transporter activity by interfering with the flexible association between the monomers. A mutant HPNhaA protein with three amino acid substitutions at residues 57-59 did not form a dimer, and yet was active, indicating that the monomer is functional.
منابع مشابه
The fourth transmembrane domain of the Helicobacter pylori Na+/H+ antiporter NhaA faces a water-filled channel required for ion transport.
Cysteine-scanning mutagenesis was performed from Ser-130 to Leu-160 in the fourth transmembrane domain (TM4) of the Na+/H+ antiporter NhaA from Helicobacter pylori to determine the topology of each residue and to identify functionally important residues. All of the mutants were based on cysteine-less NhaA (Cys-less NhaA), which functions very similarly to the wild-type protein, and were express...
متن کاملAssessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H+ antiporter of E. coli.
The pH dependence of the structure of the main Na(+)/H(+) antiporter NhaA of Escherichia coli is studied by continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) techniques on singly spin-labeled mutants. Residues 225 and 254 were selected for site-directed spin labeling, as previous work suggested that they are situated in domains undergoing pH-dependent structural changes. A we...
متن کاملNhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability.
The Escherichia coli Na(+)/H(+) antiporter (Ec-NhaA) is the best-characterized of all pH-regulated Na(+)/H(+) exchangers that control cellular Na(+) and H(+) homeostasis. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from other antiporters that share the Ec-NhaA structural fold. This α-hairpin is located in the dimer interface of the Ec-NhaA homodimer together with a β-sheet. Here ...
متن کاملPhysiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli.
The nhaB gene which codes for Na+/H+ antiporter activity in Escherichia coli was recently cloned (Pinner, E., Padan, E., and Schuldiner, S. (1992) J. Biol. Chem. 267, 11064-11068). In order to elucidate the role of nhaB in Na+ and H+ ions physiology and its interaction with nhaA, we generated mutants in which the chromosomal gene has been inactivated by insertion/deletion. A mutant devoid of bo...
متن کاملNhaA crystal structure: functional-structural insights.
Na(+)/H(+) antiporters are integral membrane proteins that exchange Na(+) for H(+) across the cytoplasmic membrane and many intracellular membranes. They are essential for Na(+), pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na(+)/H(+) antiporters are tightly r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 426 1 شماره
صفحات -
تاریخ انتشار 2010